Skip to content

Guide

CFGGuide

Bases: Guide

Guide to generate text that is in the language of a context-free grammar.

Source code in outlines/fsm/guide.py
class CFGGuide(Guide):
    """Guide to generate text that is in the language of a context-free grammar."""

    def __init__(self, cfg_string: str, tokenizer):
        self.cfg_string = cfg_string
        self.tokenizer = tokenizer

        self.parser = Lark(
            cfg_string,
            parser="lalr",
            lexer="contextual",
            propagate_positions=False,
            maybe_placeholders=False,
            regex=True,
            import_paths=[grammars.GRAMMAR_PATH],
        )
        self.terminal_regexps = dict()
        for terminal in self.parser.terminals:
            if terminal.pattern is not None:
                self.terminal_regexps[terminal.name] = terminal.pattern.to_regexp()
        self.terminal_regexps["$END"] = tokenizer.eos_token

        self.generation = ""
        self.reset_state = False
        self.allow_eos = False
        self.regex_fsm: RegexGuide

        self.check_last = False
        self.proposal_last: List[int] = []
        self.regex_fsm_last: RegexGuide

        self.start_state = 0
        self.final_state = -1

    def get_next_instruction(self, state: int) -> Instruction:
        """Generate an instruction for the next step.

        Upon initialization, the CFG incremental parser is used to determine the
        first regex and construct the first FSM to generate the first terminal.

        This FSM is used for proposals until either:

        - The FSM is exhausted, and its only remaining option is the EOS token,
          in which case we feed the generated terminal to the
          CFG incremental parser and allow it to propose the next regex
          corresponding to the next set of valid terminals.
        - The current FSM can be exhausted, but the EOS token is not the only
          remaining option. In this case we allow proposal of current terminal
          extensions, store the current FSM and its state, then also use the CFG
          parser to propose a new regex corresponding to terminating the current
          terminal and starting the next one. The model can then sample from
          either of these sets to determine whether to extend the current
          terminal or terminate it and start the next one.

        The CFG incremental parser is allowed to propose the EOS token from any accepting state,
        and once it is generated, the FSM will continue to always generate the EOS token.

        Parameters
        ----------
        state
            The current state of the FSM.

        Returns
        -------
        A list that contains the tokens to mask.

        """
        if self.is_final_state(state):
            return Write([self.tokenizer.eos_token_id])

        proposal: List[int] = []
        if self.generation != "":
            if self.check_last:
                proposer = self.regex_fsm_last
            else:
                proposer = self.regex_fsm

            instruction = proposer.get_next_instruction(state)

            assert instruction.tokens is not None

            if isinstance(instruction, Write):
                proposal += instruction.tokens
            else:
                proposal += instruction.tokens

            if self.tokenizer.eos_token_id not in proposal:
                return Generate(proposal)

            self.check_last = False
            proposal = [x for x in proposal if x != self.tokenizer.eos_token_id]
            if len(proposal) > 0:
                self.check_last = True
                self.proposal_last = proposal.copy()
                self.regex_fsm_last = proposer

        interactive = self.parser.parse_interactive(self.generation)
        interactive.exhaust_lexer()

        options = {self.terminal_regexps[x] for x in interactive.accepts()}
        # add %ignore terminals
        options |= {self.terminal_regexps[x] for x in self.parser.lexer_conf.ignore}

        if self.terminal_regexps["$END"] in options:
            options.remove(self.terminal_regexps["$END"])
            if len(options) == 0:
                return Write([self.tokenizer.eos_token_id])
            self.allow_eos = True
            options.add("")
            assert len(options) > 1

        regex_string = r"(" + r"|".join([r"(" + x + r")" for x in options]) + r")"
        self.regex_fsm = RegexGuide(regex_string, self.tokenizer)
        self.reset_state = True

        instruction = self.regex_fsm.get_next_instruction(self.start_state)

        assert instruction.tokens is not None

        if isinstance(instruction, Write):
            proposal += instruction.tokens
        else:
            proposal += instruction.tokens

        if self.allow_eos:
            self.allow_eos = False
        else:
            proposal = [x for x in proposal if x != self.tokenizer.eos_token_id]
            assert len(proposal) > 0

        return Generate(proposal)

    def get_next_state(self, state: int, token_id: int) -> int:
        """Update the state of the guide.

        Transitions the underlying regex FSM to its next state.
        If at max tokens or EOS token, transition permanently to the final state.
        Update stored partial generations for subsequent incremental parsing.

        Parameters
        ----------
        state
            The current state of the FSM.
        token_id
            The id of the token that was just generated.

        Returns
        -------
        The new state of the FSM.
        """

        # We need to return the final state when in the final state because we
        # then generate EOS tokens instead of stopping the generation.
        if token_id == self.tokenizer.eos_token_id or state == self.final_state:
            return self.final_state

        self.generation += self.tokenizer.decode([token_id])[0]

        if self.check_last:
            if token_id in self.proposal_last:
                return self.regex_fsm_last.get_next_state(state, token_id)
            self.check_last = False

        if self.reset_state:
            self.reset_state = False
            state = self.start_state

        return self.regex_fsm.get_next_state(state, token_id)

    def is_final_state(self, state: int) -> bool:
        return state == self.final_state

    def copy(self) -> "CFGGuide":
        """Create a copy of the FSM."""
        return CFGGuide(self.cfg_string, self.tokenizer)

copy()

Create a copy of the FSM.

Source code in outlines/fsm/guide.py
def copy(self) -> "CFGGuide":
    """Create a copy of the FSM."""
    return CFGGuide(self.cfg_string, self.tokenizer)

get_next_instruction(state)

Generate an instruction for the next step.

Upon initialization, the CFG incremental parser is used to determine the first regex and construct the first FSM to generate the first terminal.

This FSM is used for proposals until either:

  • The FSM is exhausted, and its only remaining option is the EOS token, in which case we feed the generated terminal to the CFG incremental parser and allow it to propose the next regex corresponding to the next set of valid terminals.
  • The current FSM can be exhausted, but the EOS token is not the only remaining option. In this case we allow proposal of current terminal extensions, store the current FSM and its state, then also use the CFG parser to propose a new regex corresponding to terminating the current terminal and starting the next one. The model can then sample from either of these sets to determine whether to extend the current terminal or terminate it and start the next one.

The CFG incremental parser is allowed to propose the EOS token from any accepting state, and once it is generated, the FSM will continue to always generate the EOS token.

Parameters

state The current state of the FSM.

Returns

A list that contains the tokens to mask.

Source code in outlines/fsm/guide.py
def get_next_instruction(self, state: int) -> Instruction:
    """Generate an instruction for the next step.

    Upon initialization, the CFG incremental parser is used to determine the
    first regex and construct the first FSM to generate the first terminal.

    This FSM is used for proposals until either:

    - The FSM is exhausted, and its only remaining option is the EOS token,
      in which case we feed the generated terminal to the
      CFG incremental parser and allow it to propose the next regex
      corresponding to the next set of valid terminals.
    - The current FSM can be exhausted, but the EOS token is not the only
      remaining option. In this case we allow proposal of current terminal
      extensions, store the current FSM and its state, then also use the CFG
      parser to propose a new regex corresponding to terminating the current
      terminal and starting the next one. The model can then sample from
      either of these sets to determine whether to extend the current
      terminal or terminate it and start the next one.

    The CFG incremental parser is allowed to propose the EOS token from any accepting state,
    and once it is generated, the FSM will continue to always generate the EOS token.

    Parameters
    ----------
    state
        The current state of the FSM.

    Returns
    -------
    A list that contains the tokens to mask.

    """
    if self.is_final_state(state):
        return Write([self.tokenizer.eos_token_id])

    proposal: List[int] = []
    if self.generation != "":
        if self.check_last:
            proposer = self.regex_fsm_last
        else:
            proposer = self.regex_fsm

        instruction = proposer.get_next_instruction(state)

        assert instruction.tokens is not None

        if isinstance(instruction, Write):
            proposal += instruction.tokens
        else:
            proposal += instruction.tokens

        if self.tokenizer.eos_token_id not in proposal:
            return Generate(proposal)

        self.check_last = False
        proposal = [x for x in proposal if x != self.tokenizer.eos_token_id]
        if len(proposal) > 0:
            self.check_last = True
            self.proposal_last = proposal.copy()
            self.regex_fsm_last = proposer

    interactive = self.parser.parse_interactive(self.generation)
    interactive.exhaust_lexer()

    options = {self.terminal_regexps[x] for x in interactive.accepts()}
    # add %ignore terminals
    options |= {self.terminal_regexps[x] for x in self.parser.lexer_conf.ignore}

    if self.terminal_regexps["$END"] in options:
        options.remove(self.terminal_regexps["$END"])
        if len(options) == 0:
            return Write([self.tokenizer.eos_token_id])
        self.allow_eos = True
        options.add("")
        assert len(options) > 1

    regex_string = r"(" + r"|".join([r"(" + x + r")" for x in options]) + r")"
    self.regex_fsm = RegexGuide(regex_string, self.tokenizer)
    self.reset_state = True

    instruction = self.regex_fsm.get_next_instruction(self.start_state)

    assert instruction.tokens is not None

    if isinstance(instruction, Write):
        proposal += instruction.tokens
    else:
        proposal += instruction.tokens

    if self.allow_eos:
        self.allow_eos = False
    else:
        proposal = [x for x in proposal if x != self.tokenizer.eos_token_id]
        assert len(proposal) > 0

    return Generate(proposal)

get_next_state(state, token_id)

Update the state of the guide.

Transitions the underlying regex FSM to its next state. If at max tokens or EOS token, transition permanently to the final state. Update stored partial generations for subsequent incremental parsing.

Parameters

state The current state of the FSM. token_id The id of the token that was just generated.

Returns

The new state of the FSM.

Source code in outlines/fsm/guide.py
def get_next_state(self, state: int, token_id: int) -> int:
    """Update the state of the guide.

    Transitions the underlying regex FSM to its next state.
    If at max tokens or EOS token, transition permanently to the final state.
    Update stored partial generations for subsequent incremental parsing.

    Parameters
    ----------
    state
        The current state of the FSM.
    token_id
        The id of the token that was just generated.

    Returns
    -------
    The new state of the FSM.
    """

    # We need to return the final state when in the final state because we
    # then generate EOS tokens instead of stopping the generation.
    if token_id == self.tokenizer.eos_token_id or state == self.final_state:
        return self.final_state

    self.generation += self.tokenizer.decode([token_id])[0]

    if self.check_last:
        if token_id in self.proposal_last:
            return self.regex_fsm_last.get_next_state(state, token_id)
        self.check_last = False

    if self.reset_state:
        self.reset_state = False
        state = self.start_state

    return self.regex_fsm.get_next_state(state, token_id)

Generate dataclass

Generate instruction

Attributes

tokens The tokens that lead to a valid completion if generated. A value of None indicates that all tokens are allowed.

Source code in outlines/fsm/guide.py
@dataclass(frozen=True)
class Generate:
    """Generate instruction

    Attributes
    ----------
    tokens
        The tokens that lead to a valid completion if generated.  A value
        of ``None`` indicates that all tokens are allowed.
    """

    tokens: Optional[List[int]]

Guide

Bases: Protocol

Base definition of a generation guide.

A generation guide defines the behavior of a finite-state machine that guides a text generation procedure. Unlike the DFAs built from regular expressions guides can also emit a Write instructions which tells the model that it can append a sequence of tokens (or token word) instead of generating it.

Source code in outlines/fsm/guide.py
class Guide(Protocol):
    """Base definition of a generation guide.

    A generation guide defines the behavior of a finite-state machine that guides
    a text generation procedure. Unlike the DFAs built from regular expressions
    guides can also emit a `Write` instructions which tells the model that it can
    append a sequence of tokens (or token word) instead of generating it.

    """

    def get_next_instruction(self, state: int) -> Instruction:
        ...

    def get_next_state(self, state: int, token_id: int) -> int:
        ...

    def is_final_state(self, state: int) -> bool:
        ...

    def copy(self) -> "Guide":
        ...

RegexGuide

Bases: Guide

Guide to generate text in the language of a regular expression.

Source code in outlines/fsm/guide.py
class RegexGuide(Guide):
    """Guide to generate text in the language of a regular expression."""

    initial_state = 0

    def __init__(self, regex_string: str, tokenizer):
        (
            self.states_to_token_maps,
            self.empty_token_ids,
            fsm_finals,
        ) = create_states_mapping(regex_string, tokenizer)
        self.eos_token_id = tokenizer.eos_token_id
        self.final_states = fsm_finals | {-1}

    def get_next_instruction(self, state: int) -> Instruction:
        """Return the next instruction for guided generation.

        The initialization of the guide builds an index which maps FSM states to a
        map from authorized tokens to the state in which the guide needs to move
        if said token is generated. Therefore the authorized tokens at the
        current state are the keys of the map returned by the value of the index
        for current state.

        If the current state is not contained in the end this means that we are
        in a final state of the guide. We only authorize EOS tokens in the final
        state.

        Parameters
        ----------
        state
            The current state of the guide.

        Returns
        -------
        A `Generate` instance that contains the model and the allowed token ids.

        """
        next_tokens_to_end_states = self.states_to_token_maps.get(state)
        if next_tokens_to_end_states is None:
            return Write([self.eos_token_id])

        return Generate(list(next_tokens_to_end_states.keys()))

    def get_next_state(self, state: int, token_id: int) -> int:
        """Update the state of the guide.

        We use the index to determine to which state the guide should transition
        given the token that was just generated.

        Parameters
        ----------
        state
            The current state of the guide.
        token_id
            The id of the token that was just generated.

        Returns
        -------
        The new state of the guide.

        """
        if token_id == self.eos_token_id or state not in self.states_to_token_maps:
            return -1

        last_token_to_end_state = self.states_to_token_maps[state]
        next_state = last_token_to_end_state.get(token_id)
        if next_state is None:
            next_state = -1

        return next_state

    @classmethod
    def from_interegular_fsm(
        cls, interegular_fsm: interegular.fsm.FSM, tokenizer: "Tokenizer"
    ):
        from_interegular_instance = cls.__new__(cls)

        def create_states_mapping_from_interegular_fsm(
            fsm: interegular.fsm.FSM,
        ) -> Tuple[dict, set]:
            """Create the variables related to the mapping between states and tokens
            The parameters of the function are used for caching purpose
            """
            byte_fsm = make_byte_level_fsm(fsm.reduce(), keep_utf8=True)
            regex_fsm, _ = make_deterministic_fsm(byte_fsm)
            states_to_token_maps, empty_token_ids = create_fsm_index_tokenizer(
                regex_fsm, tokenizer
            )

            # We make sure that it is possible to generate strings in the language
            # of the regular expression with the tokens present in the model's
            # vocabulary.
            if not any(
                regex_fsm.finals.intersection(v.values())
                for v in states_to_token_maps.values()
            ):
                raise ValueError(
                    "The vocabulary does not allow us to build a sequence that matches the input regex"
                )

            return states_to_token_maps, empty_token_ids

        (
            from_interegular_instance.states_to_token_maps,
            from_interegular_instance.empty_token_ids,
        ) = create_states_mapping_from_interegular_fsm(interegular_fsm)
        from_interegular_instance.eos_token_id = tokenizer.eos_token_id
        return from_interegular_instance

    def is_final_state(self, state: int) -> bool:
        """Determine whether the current state of the guide is a final state."""
        return state in self.final_states

    def copy(self):
        return self

get_next_instruction(state)

Return the next instruction for guided generation.

The initialization of the guide builds an index which maps FSM states to a map from authorized tokens to the state in which the guide needs to move if said token is generated. Therefore the authorized tokens at the current state are the keys of the map returned by the value of the index for current state.

If the current state is not contained in the end this means that we are in a final state of the guide. We only authorize EOS tokens in the final state.

Parameters

state The current state of the guide.

Returns

A Generate instance that contains the model and the allowed token ids.

Source code in outlines/fsm/guide.py
def get_next_instruction(self, state: int) -> Instruction:
    """Return the next instruction for guided generation.

    The initialization of the guide builds an index which maps FSM states to a
    map from authorized tokens to the state in which the guide needs to move
    if said token is generated. Therefore the authorized tokens at the
    current state are the keys of the map returned by the value of the index
    for current state.

    If the current state is not contained in the end this means that we are
    in a final state of the guide. We only authorize EOS tokens in the final
    state.

    Parameters
    ----------
    state
        The current state of the guide.

    Returns
    -------
    A `Generate` instance that contains the model and the allowed token ids.

    """
    next_tokens_to_end_states = self.states_to_token_maps.get(state)
    if next_tokens_to_end_states is None:
        return Write([self.eos_token_id])

    return Generate(list(next_tokens_to_end_states.keys()))

get_next_state(state, token_id)

Update the state of the guide.

We use the index to determine to which state the guide should transition given the token that was just generated.

Parameters

state The current state of the guide. token_id The id of the token that was just generated.

Returns

The new state of the guide.

Source code in outlines/fsm/guide.py
def get_next_state(self, state: int, token_id: int) -> int:
    """Update the state of the guide.

    We use the index to determine to which state the guide should transition
    given the token that was just generated.

    Parameters
    ----------
    state
        The current state of the guide.
    token_id
        The id of the token that was just generated.

    Returns
    -------
    The new state of the guide.

    """
    if token_id == self.eos_token_id or state not in self.states_to_token_maps:
        return -1

    last_token_to_end_state = self.states_to_token_maps[state]
    next_state = last_token_to_end_state.get(token_id)
    if next_state is None:
        next_state = -1

    return next_state

is_final_state(state)

Determine whether the current state of the guide is a final state.

Source code in outlines/fsm/guide.py
def is_final_state(self, state: int) -> bool:
    """Determine whether the current state of the guide is a final state."""
    return state in self.final_states

StopAtEOSGuide

Bases: Guide

Guide to generate tokens until the EOS token has been generated.

Source code in outlines/fsm/guide.py
class StopAtEOSGuide(Guide):
    """Guide to generate tokens until the EOS token has been generated."""

    final_state = 1
    start_state = 0

    def __init__(self, tokenizer: "Tokenizer"):
        """Initialize the generation guide.

        model
            The logit generator used to generate the next token.

        """
        self.eos_token_id = tokenizer.eos_token_id
        self.vocabulary = tokenizer.vocabulary.values()

    def get_next_instruction(self, state: int) -> Instruction:
        if self.is_final_state(state):
            return Write([self.eos_token_id])
        return Generate(None)

    def get_next_state(self, state: int, token_id: int) -> int:
        if token_id == self.eos_token_id or state == self.final_state:
            return self.final_state

        return self.start_state

    def is_final_state(self, state: int):
        return state == self.final_state

    def copy(self):
        return self

__init__(tokenizer)

Initialize the generation guide.

model The logit generator used to generate the next token.

Source code in outlines/fsm/guide.py
def __init__(self, tokenizer: "Tokenizer"):
    """Initialize the generation guide.

    model
        The logit generator used to generate the next token.

    """
    self.eos_token_id = tokenizer.eos_token_id
    self.vocabulary = tokenizer.vocabulary.values()

Write dataclass

Write instruction.

Attributes

tokens The sequence of tokens to be added to the current sequence by the generation process.

Source code in outlines/fsm/guide.py
@dataclass(frozen=True)
class Write:
    """Write instruction.

    Attributes
    ----------
    tokens
        The sequence of tokens to be added to the current sequence by the
        generation process.

    """

    tokens: List[int]

create_states_mapping(regex_string, tokenizer)

Create the variables related to the mapping between states and tokens The parameters of the function are used for caching purpose

Source code in outlines/fsm/guide.py
@cache()
def create_states_mapping(
    regex_string: str, tokenizer: "Tokenizer"
) -> Tuple[dict, set, set]:
    """Create the variables related to the mapping between states and tokens
    The parameters of the function are used for caching purpose
    """
    regex_pattern = interegular.parse_pattern(regex_string)
    byte_fsm = make_byte_level_fsm(regex_pattern.to_fsm().reduce(), keep_utf8=True)
    regex_fsm, _ = make_deterministic_fsm(byte_fsm)
    states_to_token_maps, empty_token_ids = create_fsm_index_tokenizer(
        regex_fsm, tokenizer
    )

    # We make sure that it is possible to generate strings in the language
    # of the regular expression with the tokens present in the model's
    # vocabulary.
    if not any(
        regex_fsm.finals.intersection(v.values()) for v in states_to_token_maps.values()
    ):
        raise ValueError(
            "The vocabulary does not allow us to build a sequence that matches the input regex"
        )

    return states_to_token_maps, empty_token_ids, regex_fsm.finals